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Abstract 
 

This Ph.D. thesis is focused on the importance of daunomycin/daunorubicin 

and a novel method to enhance its production in the Streptomyces ceoruleorubidus  in 

combination of cultivation media modifications and counteracting autotoxicity. 

daunorubicin (DNR) is an anthracycline antibiotic originating from soil-dwelling 

actinobacteria extensively used to treat malignant tumors. Over the decades, extensive 

attempts were made to enhance the production of anthracyclines by introducing 

genetic modifications and mutations in combination with media optimisation, but the 

target production levels remain comparatively low. Developing an appropriate culture 

medium to maximise the yield of DNR and preventing auto-toxicity for the producing 

organism remains a challenge. This work sheds light on a method involving 

perturbation that enhances the precursors to regulate PKS II biosynthesis, enhancing 

cells' capacity to increase secondary metabolite production. The suggested method also 

entails the preparation of culture media for the cultivation of Streptomyces sp. and 

enhanced yield of DNR and making it inactive with iron or its reduced forms following 

efflux from the producer. The iron or iron-DNR complex is encapsulated by oleic acid 

or lipid micelle layers in the culture media, finally resulting in the generated inactive 

DNR and the DNR-iron-oil complex. This idea has the potential to protect the producer 

organism from autotoxicity and prevent the inhibition of metabolite production. This 

research successfully induces an autonomous resistance mechanism through biogenic 

nanoparticle formation (ADBN) by developing a specialised cultivation medium that 

integrates olive pomace oil and iron. The approach of substituting sugar with oil in 

culture media has a dual role where it promotes Streptomyces growth by utilizing lipids 

as an energy source and encapsulating the generated DNR-iron complex in the 

medium. The amphiphilic properties of olive pomace oil not only serve as a carbon 

source but also facilitate the stabilization of nanoparticles, thereby enhancing the 

efficacy of the synthesis process due to its rich phenolic content, which promotes 

crucial redox reactions. The optimization of the medium composition through 

empirical methods resulted in a marked increase in daunomycin production, achieving 

yields between 5.5 and 6.0 g/L, which demonstrates a significant advancement relative 

to prior methodologies. This research not only contributes to the field of microbial 

fermentation and antibiotic production but also emphasizes the importance of 

minimizing environmental impacts through the production of insoluble daunomycin 
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precipitates that can be efficiently recovered from the cultivation medium. Overall, 

these findings present promising avenues for further investigation into the mechanisms 

underlying biogenic nanoparticle formation and the optimization of cultivation 

processes. Such explorations may not only refine microbial production systems for 

daunomycin but also broaden the potential application of similar strategies for 

synthesising other therapeutically important compounds. 

 

We anticipate that this work will help researchers working with secondary metabolite 

production decipher a methodology that would enhance DNR yield and facilitate the 

extraction of the resulting DNR by lowering costs in large-scale fermentation. 

 

Keywords: Streptomyces, daunomycin, autotoxicity, enhanced production, iron-

interaction 
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1. Introduction 
 
Daunomycin, an anthracycline antibiotic originally isolated from the bacterium Streptomyces 
peucetius, plays a pivotal role in treating various cancers, particularly leukemia. Its therapeutic 
efficacy is primarily attributed to its ability to intercalate into DNA, disrupting essential 
replication and transcription processes in rapidly dividing cells. Additionally, daunomycin 
serves as a precursor for synthesising more advanced anthracyclines (Thomas 1990). 
However, its clinical utility is often compromised by inherent cytotoxic effects (Thirumaran 
et al. 2007), including toxicity to the microbial strains used for its production, posing 
significant challenges for industrial-scale synthesis (Srinivasan et al. 2010a; Vasanthakumar 
et al. 2013a). 
A critical aspect governing daunomycin's biological activity is its interaction with iron, 
particularly through the Fenton reaction. This process illustrates how iron can catalyze the 
production of reactive oxygen species (ROS) from hydrogen peroxide, leading to oxidative 
stress and cellular damage (Taatjes et al. 1997). While iron is vital for numerous physiological 
functions, excessive concentrations can exacerbate oxidative effects. The therapeutic use of 
iron chelators to mitigate daunomycin toxicity (Kaiserová et al. 2007) underscores the need 
for a deeper understanding of the interplay between these two elements, as it significantly 
influences the compound's pharmacological properties and therapeutic efficacy in 
fermentation contexts. 
While most research has traditionally focused on the toxicological effects of daunomycin in 
eukaryotic models, its implications for prokaryotic organisms remain only partially explored 
nowadays (Cai et al. 2023). Investigations have largely centered on the biosynthesis of 
daunomycin and the molecular mechanisms of resistance, particularly involving efflux pumps 
(Malla et al. 2010; Yuan et al. 2011a).  
This study focuses on the development of a cultivation medium specifically designed to induce 
auto-resistance through Autonomous Defense Through Biogenic Nanoparticle Formation 
(ADBN). Utilizing a fermentation medium enriched with olive pomace oil and iron, this 
research aims to explore the inherent affinity of daunomycin for both iron and oil. Our strategy 
leverages the combination of olive pomace oil and bacteria to facilitate the formation of iron 
nanoparticles (NPs) (Afonso et al. 2024).  
Furthermore, it seeks to bridge the existing knowledge gap by investigating the effects of 
daunomycin on eukaryotic cells in conjunction with the underexplored data from prokaryotic 
organisms, especially those involved in the production of daunomycin. This dual approach 
aims to enhance our understanding of daunomycin's mechanisms of action and its potential 
applications in both eukaryotic and prokaryotic systems. 

2. Literature Review 
 

2.1.Anthracyclines 
Anthracyclines are chemical compounds derived from soilborne actinobacteria that have been 
used in antibiotics and as anticancer medication agents (Dinis et al. 2023). They are a class of 
chemotherapeutic drugs that have been widely utilized to treat leukaemia and cancer in adults 
and paediatrics since their discovery in Streptomyces peucetius in the 1960s (Weiss 1992; 
Shapiro and Recht 2001; Minotti et al. 2004; McGowan et al. 2017; Murabito et al. 2023).  
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The class of Anthracyclines and their derivatives, including doxorubicin, epirubicin, 
daunorubicin, and idarubicin, are the most potent anticancer drugs ever discovered, having the 
ability to alter mitochondrial dynamics by intercalating with DNA helix and cause 
cytotoxicity. Anthracyclines exert their cytotoxic effects primarily through their interaction 
with DNA. By intercalating into DNA strands, they inhibit proper DNA replication and 
transcription, inducing double-strand breaks and impairing DNA repair mechanisms. 
Additionally, anthracyclines generate reactive oxygen species (ROS) through redox cycling, 
further contributing to DNA damage and apoptosis (Dinis et al. 2023).  
The anthracyclines are tetracyclic aromatic polyketides that are produced by the PKS II 
(polyketide synthase type II) pathway and are structurally composed of an anthraquinone 
(aglycone) moiety and an amino sugar (carbohydrate unit) at the C7 or C10 or at both positions. 
The absence of sugar at C10  is substituted by a carbo-methoxyl group or a hydroxyl group 
through processes like glycolisation and hydroxylation (Fujiwara et al. 1985; Hortobágyi 
1997; Dinis et al. 2023). The term “Anthracyclines” was introduced to denote the colour (red 
to yellow-red optical dyes) of the chemical derivatives 7,8,9,10-tetrahydro-5,12-
naphtacenoquinones (Brockmann and Brockmann Jr. 1963; Metsä-Ketelä et al. 2008).  In the 
1970s, chemists were driven to create anthracycline derivatives with reduced toxicity because 
even small structural modifications might significantly affect the bioactivity of the 
anthracyclines (Hortobágyi 1997). The interest and progress in synthesis pathway engineering 
(synthetic and semi-synthetic via site-directed mutations, gene alterations) of anthracyclines 
and their analogues were carried out after the 1990s due to their exciting catalysing properties 
(Metsä-Ketelä et al. 2008).  

 

2.2. The Anthracyline Producers 
The anthracycline compounds occurring in nature are the secondary metabolites produced by 
the Actinobacteria, especially in the genus Streptomyces (Ait et al. 2015). They possess a 
lifecycle similar to filamentous fungi, reproduce through sporulation, and exhibit siderophore 
activity and produce metabolites like desferrioxamine (iron chelator), geosmin (earthy smell 
organic compound), streptothricin (antibiotic) and streptomycin (antibiotic) (Zhu et al. 2014; 
Martín-Sánchez et al. 2019). Approximately 90% of the know antibiotics are obtained from 
the organisms of Streptomeces genera and to date, more than 500 naturally occurring 
anthracyclines have been isolated from Streptomyces sp. (Elshahawi et al. 2015; Hulst et al. 
2022). 
Streptomyces Ceoruleorubidus is a potentially important streptomyces bacteria that employs 
the synthesis of antifungal, antibacterial, immunosuppressive, and antitumor compounds such 
as Doxorubicin and Daunorubicin (Kandula and Terli 2013; Bundale et al. 2015; Li and Zhang 
2021)  This proliferative ability for synthesizing such metabolites can be altered by influencing 
variables such as nitrogen and carbon sources, culturing conditions such as temperature, pH, 
and incubation period, which can play a critical role in the economic dynamics involved in 
secondary metabolite production. The use of physical and chemical mutations in the 
Streptomyces species has been reported to have the enhanced production of secondary 
metabolites, especially anthracyclines (Oki et al.; Blumauerova et al. 1978; Zhang et al. 2018). 
 

2.3. Daunorubicin/Daunomycin  
  
Daunorubicin (DNR) also called Daunomycin, is an anthracycline antibiotic that was first 
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discovered in 1964 from Streptomyces peucetius and is extensively employed in treating 
malignant tumours, especially leukemia  (Arcamone et al. 1964; Drevin et al. 2022; Bayles et 
al. 2023)  Despite the demonstrated cardiotoxicity of daunomycin in Guinea pigs, rats, and 
humans (Ainger et al.1976; Bossa et al. 1977; von Hoff et al. 1977), the cumulatively reduced 
dosages administered during chemotherapy allows the mitigation of these cardiovascular risks 
(Swain et al. 2003; Hegazy et al. 2023). It was approved in 1974 as an anti-cancer drug 
worldwide for commercial use. The daunomycin (DNR) and doxorubicin (DOX) share 
tetracyclic alycone and daunosamine sugar moieties. The only difference between DNR and 
DOX is that the side chain of DOX terminates with primary alcohol and DNR with a methyl 
group (Minotti et al. 2004). The quest to find a better alternative with reduced toxicity has led 
to thousands of analogues with many substitution reactions in the anthraquinone moiety 
(tetracyclic structure) (Minotti et al. 2004). Out of which currently, six semi-synthetic 
derivatives, including DOX, idarubicin, epirubicin, pirarubicin and valurubicin, are under 
clinical use. 

 

2.4. Biosynthesis of DNR in Streptomyces 
The production of secondary metabolites occurs through two phases: trophophase (normal 
growth phase), followed by idiophase (capacity to produce metabolites), where, at times, both 
phases can be regulated, overlapped and changed with the alterations in media and growth 
conditions. The enhancement in the secondary metabolite production can be possible with the 
development of resistance in the cells as the produced compounds are autotoxic. This led to 
the works on biosynthetic gene cluster alterations and expression enhancement of activator 
genes, transcription factors and increased mutations in promotor genes (Ohnuki et al. 1985; 
Minotti et al. 2004). 

 

2.4.1. Biosynthetic Gene Clusters (BGCs) and gene regulation 
The importance and biosynthesis of Daunorubicin and its gene clusters have been 
characterized by two BGCs in different strains (Grimm et al. 1994; Dickens et al. 1995)The 
majority of BGCs share homologous genes encoding monofunctional enzymes for the 
assembly of aglycone units, and the BGC for DNR (daunorubicin) and DOX (doxorubicin) 
was sequenced from the Streptomyces peuctius ATCC 27952 (Parajuli et al. 2004). They 
identified a 40kb sequence encoding the BGC for DNR, DOX consisting of 37 ORFs (open-
reading frames). The distinctive characteristics among the BCGs include a high abundance of 
glycosyl transferases, gene sets involved in deoxysugar production and a repertoire of tailoring 
genes for secondary metabolite. The DNR/DXR biosynthesis is completed in three steps: (A) 
Formation of Aglycone (ε-rhodomycinone), (B) Formation of an active sugar moiety 
(thymidine diphosphate daunosamine), (C) Glycosylation of ε-rhodomycinone and post 
polyketide modifications (decarboxylation, methylation and hydroxylation) (Grimm et al. 
1994; Hutchinson 1997). The BGC responsible for the biosynthesis of polyketide and sugar 
moieties in DNR/DOX also includes the regulatory genes for the initiation, regulation and 
termination of the entire synthesis pathway. 
The production pathway is regulated by the genes including dnrO, dnrN and dnrI, the 
transcription factors, where dnrO holds a significant importance in initiating the pathway. The 
dnrO produces a DNA helix binding domain, which is a key transcriptional regulator that 
activates the dnrN transcriptional activator, which finally leads to the activation of dnrI. The 
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dnrI encoding enzyme binds to several polyketide synthases and facilitates the activation of 
efflux regulatory genes and initiation of DNR biosynthesis.  The BGC also includes a 
transcriptional repressor drrD/dnrW, which promotes the transcriptional control by coherent 
feed-forward loop, self-resistance and feedback regulation (Vasanthakumar et al. 2013b; 
Shrestha et al. 2019). The drrD/dnrW regulates the master transcription factor dnrI, which is 
crucial for the DNR/DOX biosynthesis. Deleting dauW (ortholog of drrD/dnrW in S. 
ceoruleorubidus) has increased the production of DNR by 8 folds  (Yuan et al. 2011b).  

The regulation of the lethal concentrations of produced DNR inside the cell is 
conferred by the drrAB locus, which includes the drrA and drrB proteins necessary for the 
efflux of the finished product (Guilfoile and Hutchinson 1991; Vasanthakumar et al. 2013b).   
The expression and function of drrA and drrB are interdependent at an ATP-driven pump, 
where drrA is a peripheral membrane protein acting as an energy-transducing unit inside the 
cell when bound to the ATP in a DOX-dependent manner and drrB is the internal protein with 
hydrophobicity and helps in the efflux of produced DNR/DOX (Kaur 1997; Kaur et al. 2005).  
A mutant strain without the drrAB has exhibited a decline in DNR production and resulted in 
cell death. Overexpression of drrAB has resulted in the overproduction of DNR and promoted 
self-resistance (Li et al. 2014).  Thus, the self-resistance genes also indirectly affect the 
biosynthetic pathway in DNR/DOX production (Srinivasan et al. 2010b). Another resistance 
gene is drrC, which functions in the presence of ATP and DNR by binding to the DNR 
intercalated DNA and propelling it outside of the cell. This self-resistance gene maintains cell 
viability and regulates the lethal concentrations of DNR in a dependent manner, which relies 
on dnrN and dnrI in the biosynthetic pathway (Furuya and Richard Hutchinson 1998). 

The entire pathway and its regulation decide the fate of DNR/DOX quantity 
production in Streptomyces sp. Thus, over the past decades, researchers have considered 
engineering the genes involved in the biosynthesis of aglycone, sugar moiety, tailoring 
reactions, transcriptional factors, transcriptional repressor and self-resistance to improve 
DNR/DOX production at an industrial level for commercial uses in cancer medication.  

 

2.5. Mode of Action of DNR/DOX  
Since their discovery, the DNR and DOX have been extensively employed for treating solid 
tumours but have faced significant drawdown due to their toxic properties. Anthracyclines 
enter cells through cation transport and passive diffusion, eventually leading to alterations in 
the proteasome and nucleosome  (Mattioli et al. 2023).   
 

2.5.1. DNA intercalation 
Anthracyclines exhibit a strong affinity for DNA by inserting their aglycone moieties between 
the base pairs, causing the separation of the existing base pairs, and positioning their sugar 
components in the minor groove of the DNA (Comings and Drets 1976). DNR and DOX have 
a preferential ability to bind to DNA at GC base pairs of both mitochondrial and nuclear DNA 
by establishing hydrogen bonding between the hydroxyl group on the C-9 position at aglycone 
moiety and N2, N3 of guanine (Chaires et al. 1990; Nunn et al. 1991; Ashley and Poulton 
2009). This inhibits cellular DNA transcription, replication, recombination and repair, which 
creates torsional stress. The torsional stress alters the structure (disassociation of H2A/H2B 
dimers from histone core) and dynamics of nucleosomes (Gupta et al. 2009; Martins-Teixeira 
and Carvalho 2020). The histone eviction caused by DOX/DNR (in H3 due to rich GC base 
pairs) majorly due to the sugar moiety binding to DNA critically causes chromatin damage, 
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which leads to epigenomic aberrations and transcriptional alterations (Pang et al. 2015; 
Mattioli et al. 2023). 

 

2.5.2.  Topoisomerase II (Topo II) poisoning 
The Topoisomerase II (Topo II) induces double-stranded breaks (DSBs), releases torsional 
stress and re-ligates the DNA breaks, ensuring the proper DNA transcription, replication and 
repair (Nitiss 2009). Anthracyline interacts with the Topo II enzyme to form an anthracycline-
topoisomerase-DNA quarternary complex. It induces irreversible DNA damage by preventing 
the regeneration of phosphodiester bonds between the DNA strands (Mattioli et al. 2023). 
DNR/DOX intercalates the Topo II DNA with their cyclohexane ring A in aglycone moiety 
and 4-methoxy group in sugar moiety. The changes in the functionality of Topo II to a DNA 
nuclease generate genomic instability, activation of DNA damage response and TP53 
pathways, eventually leading to cell death (van der Zanden et al. 2021). In mammals, the Topo 
II enzyme is distinguished into isoforms Topo IIα (generate replication forks during mitosis in 
actively diving cells) and Topo IIβ (expressed in most cell types devoid proliferation status), 
where the DOX interacts with Topo IIβ in cardiomyocytes and lead to cardiotoxicity(Lyu et 
al. 2007; Zhang et al. 2012). 

 

2.5.3. Formation of DNA adducts 
Anthracyclines form DNA adducts between the two strands through covalent and hydrogen 
bonds with aglycone and sugar moieties, respectively. The DOX-DNA covalent bond in the 
cancerous cell is facilitated by the cellular formaldehyde, produced due to free radicle 
reactions with polyamines and lipids is responsible for the block in transcription, DSBs and 
replication (Kato et al. 2001). In-vitro studies using DOX by pre-activated formaldehyde 
resulted in the formation of transcriptional blocks through the formation of inter-strand adduct 
(G-DOX-G cross-linking), inhibiting the transcription process (Cullinane and Phillips 1992).  
The treatment of mice cancer cell lines with DOX leads to the disruption of the replication 
process and cell cycle arrest through the blocks in [8H]-thymidine (Bilardi et al. 2012; Forrest 
et al. 2012). The investigations involving DOX and DOX-formaldehyde conjugate on 
colorectal cancer cell lines for DNA repair mechanisms resulted in DNA adduct-induced 
damage. The studies also prove the damage (apoptosis) caused by DOX-DNA adducts is 
independent and does not rely on the Topo II activity (Swift et al. 2006; Spencer et al. 2008; 
Barthel et al. 2016). 
 

2.6. Self-Resistance in non-target species/microbial factories  
The microbial cell factories of antibiotics, anthracyclines, and related cytotoxic compounds 
like filamentous Actinobacteria and Streptomyces are programmed to deal with the cytotoxic 
compounds made by them (Hopwood 2007; Julian and Dorothy 2010). These resistance 
mechanisms include the expression of resistance genes, efflux systems to pump out 
anthracyclines, the inactivation of anthracyclines through enzymatic modifications and 
interaction with other metal elements. 

 

2.6.1. Resistance genes 
The microbial cell factories of antibiotics, anthracyclines, and related cytotoxic compounds 
like filamentous Actinobacteria and Streptomyces are programmed to deal with the cytotoxic 
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compounds made by them (Hopwood 2007; Julian and Dorothy 2010). Similar to the antibiotic 
pathway-synthesising genes on BGCs, the resistance genes are also encoded in the BGCs, 
which initiates the process of self-resistance through time-space co-ordinated expression or 
intermediate-dependent (compound produced) expression (Mak et al. 2014). The resistance 
mechanisms are variable, which include target protection, compound inactivation, 
modification, sequestration and efflux.  

In Streptomyces peucetius, the genes encoding resistance for DNR/DOX are drrA, 
drrB, and drrC unravelled when expressed in E. coli and S. lividans. The drrA and drrB 
proteins act as drug-efflux complexes produced during the idiophase, whereas the drrC is 
transcribed earlier and facilitates the efflux through drug binding (Guilfoile and Hutchinson 
1991; Lomovskaya et al. 1996; Kaur 1997). A detoxification strategy of Streptomyces by 
reducing the DOX to 7-deoxydoxorubicinolone via deglycosylation using NADH: ubiquinone 
oxidoreductases was reported (Westman et al. 2012). Developing and employing natural 
microbiome inhibitors against toxicity for drug delivery in oncological medicine would reduce 
the side effects of anthracyclines. 

2.6.2.  Efflux pumps 
 
Efflux pumps play a pivotal role in conferring multidrug resistance in bacteria by facilitating 
the expulsion of toxic compounds either produced by the organism or acquired from the 
external environment (Webber and Piddock 2003). They are key components of the cell 
membrane that regulate the internal cellular  toxic chemicals and elements (metal ions) 
concentrations through extrusion and also inhibit the re-entry of compounds to evade toxicity 
(V 2006; Bazzi et al. 2020). The efflux pumps utilize energy by hydrolysing the ATP and can 
use the electrochemical or ionic gradient inside the bacterial cells to efflux the toxic 
compounds. These efflux pumps comprise transmembrane protein helices facilitating the 
translocation of produced secondary metabolites (Gaurav et al. 2023). The DOX/DNR is 
extruded out by the AbeM efflux pump of the MATE family (using antiporters H+ and Na+) in 
Acinetobacter baumannii, whereas the ABC pumps (generally hydrolyse ATP) perform the 
extrusion in Streptomyces sp. (Abdi et al. 2020; Zack et al. 2024). 
The ABC (ATP-binding cassette) pumps facilitate the import and export of chemical 
substances based on their structural architecture and folding (Thomas and Tampé 2024). The 
ABC efflux pumps in bacteria translocate various compounds like sterols, secondary 
metabolites and lipids across the membrane through 12 transmembrane domains (TMDs) and 
two nucleotide-binding domains (NBDs).  The drrAB transporter system encodes for the efflux 
of DNR/DOX in S. peucetius, where drrA (peripheral membrane protein) binds to ATP and 
drrB (hydrophobic membrane protein) enables the translocation acting as resistance 
mechanism (Kaur and Russell 1998). Several followup studies conferred the resistance 
mechanism of drrAB transporter system and the co-dependence of both proteins in efflux 
activity (Méndez and Salas 2001; Li et al. 2013). A recent study by Dong et al. (2024) 
conducted on ABC transporter in Streptomyces ceoruleorubidus yielded significant findings, 
indicating that the drrAB genes of the DNR BGC facilitate the efflux of excess DNR/DOX 
within the cell (Dong et al. 2024) .  
 

2.7. Interaction of DNR/DOX with iron   
Daunomycin is the chelator of iron, where ionic forms of iron (Fe2+ and Fe3+) bind to specific 
functional groups of anthraquinone moiety and form stable complexes (Zweier et al. 1986).  
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The quinone group at position 5 and hydroxy group at position 6 on the aglycone part of DNR 
acts as the binding sites for iron by donating electrons. The DNR also has a side chain with 
hydroxyl groups which can donate lone pair of electrons and bind to iron (Zweier et al. 1986).  
Both ferrous (Fe2+) and ferric (Fe3+) forms of iron bind to daunomycin, where Fe2+ is highly 
reactive and readily participate in redox cycling and alter between ionic states and Fe3+ is less 
reactive and form stable complexes (Fiallo and Garnier-Suillerot 1986; Fiallo et al. 1993). This 
stabilization activity can be employed for the therapeutic purposes. The first tri-ferric 
doxorubicin compound, named Quelamycin, a metallic derivative of the Adriamycin prepared 
was through chelation in the presence of Fe (III),  (Gosálvez et al. 1978). The compound has 
been reported to be highly stable in phase I clinical trials and P 388 leukaemia cells, where the 
cytosolic components do not degrade the compound, and it also inhibits the free flow of 
electrons from NADH to oxygen molecules in cells  (Cortés-Funes et al. 1980; Beraldo et al. 
1985; Fiallo and Garnier-Suillerot 1986). The bond strength of the iron-DNR complex is high 
and the chelation activity can be reversible or disassociated in high acidic pH (lower) 
conditions and in presence of iron binding compounds like transferrin, ferritin.  

 

2.8. Interaction of DNR/DOX with oil   
The anthracycline compounds daunorubicin and idarubicin are lipophilic and their interaction 
mechanisms with the lipids are studied using various experiments (Ribeiro et al. 2013; Alves 
et al. 2017; Matyszewska 2020). Oils and the oleic acid being non-polar, bind to the 
hydrophobic regions on the anthraquinone moiety, which is often used in therapeutic 
formulation. The liposome-associated doxorubicin was reported to have reduced systemic and 
cardiotoxicity in clinical trials for humans and mice (Gabizon et al. 1986, 1989; Amselem et 
al. 1992).    The daunorubicin is encapsulated by the liposomes (phospholipid vesicles) and 
exploited for drug delivery mechanism(Juliano and Stamp 1978; Mussi et al. 2014).  
 

2.9. Culture Media for metabolites production in Streptomyces sp.  
The production of antibiotics at a large scale is a combinatorial effect which relies upon the 
strain efficiency, ability to utilise the available nutrients, physical conditions and productivity 
of the metabolites (Rodrigues da Silva et al. 2021). The primary nutrients like Carbon, 
Nitrogen and Phosphorus, along with minor mineral elements, remain the major constituents 
of the culturing media responsible for the growth and production of necessary chemical 
compounds in Streptomyces sp. The carbon serves as a prominent energy source, nitrogen is 
responsible for cell growth and metabolism, and phosphates assist in the production of the 
metabolites (Rokem et al. 2007). To date, many investigations over the decades have 
concentrated on improving secondary metabolites using strain engineering via genetic 
alterations. However, the culmination of improved levels of metabolite production through 
extensive genetic research remains unpromising. 
The DNR/DOX compounds are produced in the late growth phase through a multitude of 
enzymatic reactions by the Streptomyces strains, utilizing nutrients (Sánchez et al. 2010). The 
highest yields are achieved by combining several approaches to strain development, suitable 
culture media composition, and well-optimised fermentation conditions. The production of 
metabolites is also linked to factors like nutrients available in culture media and fermentation 
conditions (temperature, light, oxygen and pH) (Sánchez et al. 2010; Bilyk and Luzhetskyy 
2016).  



 

  16 
 

     A) Carbon source  
Glucose or sugars are the most often utilized carbon sources in industrial fermentation due to 
their low cost and high availability, even though they inhibit secondary metabolite synthesis 
(Rokem et al. 2007; Ruiz et al. 2010; Hulst et al. 2022). The carbon source serves as the vital 
controlling agent for secondary metabolite production in Streptomyces, as transcriptional 
activation or carbon catabolite repression (CCR) is dependent on the source and concentration 
of carbon (Hodgson 2000; Rokem et al. 2007; Ruiz et al. 2010). Carbon from sugars like 
glucose, maltose, glycerol, sucrose, mannose, and xylose has been reported to interfere with 
the production of more than 30 types of secondary metabolites (mostly antibiotics) in 
Streptomyces sp. (Ruiz et al. 2010; Romero-Rodríguez et al. 2017). The synthesis of 
Doxorubicin in S. peucetius has been impeded by the utilization of glucose and galactose as 
the carbon source in the culture medium (Escalante et al. 1999). Sugar carbon in the media at 
an industrial level leads to an increase in acidification and triggers feedback inhibition through 
produced intermediates. 
The erythromycin yield in Saccharopolyspora erythraea at the industrial level using oil and 
soy flour has been improved to 3.5g/L compared to the dextrin control (Hamedi et al. 2004). 
Clavulanic acid production in Streptomyces clavuligerus has been improved using Olive oil as 
a sole carbon source (Efthimiou et al. 2008). Employing soybean oil as a source of carbon has 
enhanced the production of FK506 (tacrolimus)- an immunosuppressant polyketide by 88.8% 
in Streptomyces tsukubaensis (Wang et al. 2017). Enhanced production of DOX (1100mg/L) 
was achieved by mutation treatment (UV and ART-plasma) and soybean oil as a carbon source 
in Streptomyces peucetius SIPI-11 (Wang et al. 2018). Oil utilisation has also benefited from 
imparting the activity as an antifoam at the industrial scale of fermentation. The breakdown of 
oils supports the activity of malonyl Co-A and Acetyl Co-A, which are essential for the 
biosynthesis of secondary metabolites. Thus, employing an oil-based carbon source instead of 
sugar in combination with optimised fermentation conditions and selection would enhance 
DNR/DOX production.  

 

B) Nitrogen source 
The source and concentration of nitrogen in the media also remain a vital factor for secondary 
metabolite production. Nitrogen in the form of ammonia is mostly preferred by 
microorganisms, and the genera Streptomyces naturally possess a constant nitrogen acquisition 
and metabolism to ensure their survival (Tiffert et al. 2011; Romero-Rodríguez et al. 2017). 
Streptomyces assimilate ammonia through glutamate dehydrogenase in ammonia-rich 
conditions and glutamine synthetase pathways in ammonia-deficient conditions (Rokem et al. 
2007). The influence of various regulatory mechanisms of nitrogen in Streptomyces has been 
clearly reviewed in (Krysenko 2023). The forms or sources of nitrogen, like ammonium, 
nitrate, amino acids, and polyamines, have an impact on the production of secondary 
metabolites in Streptomyces (Romero-Rodríguez et al. 2017; Krysenko 2023).  

 

C) Phosphorus source 
Phosphorus, in the form of inorganic phosphate, is the crucial element acting as the building 
blocks for nucleotides, proteins, and several regulatory signalling cascades(van Wezel and 
McDowall 2011). The concentration of phosphate in cells significantly impacts the production 
of secondary metabolites in Streptomyces and related actinobacteria (Barreiro and Martínez-
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Castro 2019). Increased concentrations of phosphates in media (>10mM) have resulted in 
decreased yields of antibiotic production, whereas the lower concentration (<0.1mM) has 
positively increased the secondary metabolite production, implying the significance of 
phosphates on biosynthetic pathways (F 2004; Romero-Rodríguez et al. 2018). The limited 
availability of phosphate results in nutritional stress and initiates the secondary metabolite 
biosynthetic pathways. The regulation of phosphate in Streptomyces is carried out through a 
two-component mechanism, PhoR-PhoP, clearly reviewed elsewhere (Allenby et al. 2012; 
Martín and Liras 2020).  
 

      D) Other elements  
A well-established culture media including all these macro components together with the 
essential microelements like Fe, Ca, Zn, S, etc, results in the enhancement of secondary 
metabolites yield. The use of rare earth elements in the culture medium for Streptomyces sp. 
is reported to activate the BCG’s cluster for secondary metabolite production (Hosaka et al. 
2009). Tanaka et al. (2010) used scandium and lanthanum in a medium for the cultivation of 
Streptomyces coelicolor and reported an increase in activity by 2.5 to 12-fold (Tanaka et al. 
2010). Optimization and starndardization of culture media considering pH, combinations of 
nutrients, agitation, temperature had resulted in enhanced production of daunomycin in 
Streptomyces sp. (Bundale et al. 2015; Wang et al. 2018). 

 
2.10.  Engineering culture media – in Prospect for improved production. 

Over the past decades, genetic alterations have been frequently used to enhance the production 
of metabolites in Streptomyces, improving regulatory gene expression, modifying resistance, 
developing efflux mechanisms, and possible combinations with strain development. However, 
modifications to the culture media can also potentially improve production yields. A 
considerable amount of research is lacking in this area, but strategies employed for other 
polyketide synthesis in Streptomyces relevant to daunomycin can provide promising insights 
into the enhancement of production devoid of complex and expensive gene editing methods. 
The prominent effect of DOX/DNR is its autotoxicity by intercalating with the DNA in the 
producers when the concentration increases. The prospective idea of this article is to prepare 
culture media for cultivating Streptomyces sp. based on binding with Iron or reduced forms of 
iron after effluxed from the producer. The iron or iron-DNR complex is encapsulated by the 
oleic acid or lipid micelle layers in the culture medium, converting the DNR/DOX to inactive 
forms and settling with the DNR-iron-oil complex. Therefore, this hypothesis can safeguard 
the producer strain from toxicity and avoid inhibiting metabolite production. 

 

2.10.1. Perturbation of metabolite biosynthesis in Streptomyces sp. 
The over expression of regulatory genes in BGCs and downregulation of repression genes and 
factor always remained as prominent approaches in the metabolic engineering of Streptomyces 
for metabolite production (Méndez and Salas 2005; Shrestha et al. 2019; Hulst et al. 2022).  
On the contrary, the availability of biosynthetic precursors also serves as a key factor that are 
generated primarily by carbon catabolism in the organisms (Nielsen 1998; Tanaka et al. 2017). 
Perturbation is the supply of precursors for modulating biosynthesis to improve cells' ability 
to enhance secondary metabolite production. The ARCs (antibiotic remodelling compounds) 
screened from Streptomyces coelicolor A3(2) are known to stimulate metabolite production 
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by acting as precursors. (Olano et al. 2008).  The ARC2 similar to the antimicrobial compound 
triclosan, has been reported to partially inhibit the fatty acid synthesis and utilize the acetyl 
CoA for polyketide biosynthesis and improve the actinorhodin yield in S. coelicolor (Olano et 
al. 2008; Craney et al. 2012). The overproduction of metabolites like oligomycin, salinomycin, 
erythromycin and actinorhodin have been reported by the using the triclosan as an elicitor of 
polyketide biosynthesis in Streptomyces sp. (Norimasa et al. 2003; Yukinori et al. 2013; 
Tanaka et al. 2017). The aim of this discussion is to propose an equivalent approach for the 
strains of Streptomyces ceoruleorubidus to enhance daunorubicin production capacity, rather 
than adhering to usual genetic engineering methods.   
 

2.10.2. Media construction for three-way interaction (DOX/DNR-iron-
oligolipid) 

The achievement of prospective three-way interaction can be achieved from distinctive 
methods under a single hood with critical optimization of conditions like pH, temperature, 
pressure, incubation time and initial components like natural chelators, metal salts and nutrient 
sources. The biosynthesis of FeO particles from their salts like FeCl.3 using phytoextracts are 
being employed in nanoparticles synthesis over decades (Singh et al. 2018; Pudhuvai et al. 
2024). The phytic acid present in plants, cereals, and legumes has a tremendous metal chelation 
potential (Graf and Eaton 1990). The phytate-metal complex is stable and cannot be liberated 
in wide pH ranges.  Phytates from soybean or soy-derived products have high iron binding 
ability, which is considered a major drawback in diet and nutrition (Hurrell et al. 1992; Gupta 
et al. 2015). Thus, utilizing soybean phytates in the culture medium facilitates iron binding 
and chelation. As discussed in the above carbon sources section, the oil source of carbon in 
the culture media for Streptomyces describes its prominence in the improved production in 
several instances, including erythromycin (Hamedi et al. 2004), clavulanic acid (Efthimiou et 
al., 2008), doxorubicin (Wang et al. 2018), salinomycin (Han et al. 2020) and josamycin (Eiki 
et al. 1988). Employing crude oils, including the raw plant parts with phytic acid contents, will 
deliver the nutrient carbon source and act as a reducing agent for iron in the media. Crude oils 
of soybean and pomace have enhanced Clavulanic acid production in Streptomyces, which is 
also a waste-to-value strategy (Efthimiou et al. 2008; Young et al. 2020). The crude plant oil 
substrate used for the cultivation media form micelles due to elevated temperature and pressure 
during autoclaving and encapsulate the FeO particles. After inoculation of the perturbated 
Streptomyces ceoruleorubidus culture to the cultivation media, the production of daunorubicin 
takes place and is effluxed out into cultivation media. 
Considering the lipophilic nature of daunorubicin, the produced, effluxed DOX/DNR into the 
medium can interact with the oligolipid surface layer with FeO particles from the oil-based 
medium (Alves et al. 2017). The interaction between anthracycline and metal ions, especially 
iron, has the potential to form complexes demonstrate high stability constants in the medium 
(Seke et al. 2019). The produced and effluxed DOX/DNR by the Streptomyces strain interacts 
directly with the FeO-micelle to form a DOX-Fe-micelle complex  (Calendi et al. 1965; 
Cortés-Funes et al. 1980; Xu et al. 2005). Thus, capturing the produced metabolite in an 
inactive form helps avoid toxicity to the producer organism.  Streptomyces' defensive strategy 
of effluxing the excess DNR/DOX re-initiates the production of new DNR/DOX molecules 
inside the cells, resulting in improved productivity. Therefore, the enhancement of the 
daunomycin production in Streptomyces using this media construction approach can be 
established with reduced costs and negligible metabolic engineering of strains. 
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3. Aims and Hypothesis  
 
The main aim of the thesis was to develop a Daunomycin-producing strain and optimise 
an efficient medium to enhance the DNR production, reduce costs and simplify downstream 
processing. Studies were focused on: 
 

 Isolation and cultivation of the Streptomyces ceoruleorubidus strain and 
optimisation of its growth on R2A (Reasoner's 2A agar), PDA, and M2 
(Melanocyte growth media). 

 Strain identification using 16S RNA.  

 Performing protoplast fusion with the wild strain of S. ceoruleorubidus by 
triclosan treatment to achieve a high DNR-producing strain. 

 Screening and selecting strains by regulatory genes dnrN, dnrO, and dnrI, 
daunomycin resistance genes drrA, drrB, and drrC.  

 Observational recording of the strain morphology of the improved strains for 
sporulation behaviour and homogenous growth. 

 Testing various C (sugar, oils) and N sources individually or in combination, 
including different mineral supplements, e.g., rare earth elements, copper, zinc, 
vitamins, antibiotics, etc., for enhanced DNR production. 

 Optimization of the culture media to encapsulate the DNR together with reduced 

iron as complex with oil and make it inactive. 
 
 
The dissertation hypothesis was (a) whether a specific iron-containing medium would lead to 
the formation of daunomycin-iron complexes that could reduce the solubility and 
bioavailability of daunomycin and (b) whether this approach would lead to reduced toxic 
impacts during fermentation while simultaneously increasing the yield of the target metabolite 
and overall production efficiency, all while minimizing the ecological footprint of the process. 
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4. Overview of the Obtained Results 
 
The results achieved during the dissertation were prepared in two manuscripts: 
 

Pudhuvai B., Beneš K., Čurn V., Bohata A., Lencova J., Vrzalova R., Barta J. and Maťha 
V.: Enhancement of Daunomycin Production in Streptomyces sp. By Counteracting 
Autotoxicity – A Prospective. Microorganisms (submitted to edition). 
 
This review is focused on the issue of daunorubicin (DNR) and the possibility of increasing 
the production of this metabolite using a specific culture medium. Our prospective review 
sheds light on a method involving perturbation that enhances the precursors to regulate PKS 
II biosynthesis, enhancing cells' capacity to increase secondary metabolite production. The 
suggested method also entails the preparation of culture media for the cultivation of 
Streptomyces sp. and enhanced yield of DNR and making it inactive with iron or its reduced 
forms following efflux from the producer. The iron or iron-DNR complex is encapsulated by 
oleic acid or lipid micelle layers in the culture media, finally resulting in the generated inactive 
DNR and the DNR-iron-oil complex. This idea has the potential to protect the producer 
organism from autotoxicity and prevent the inhibition of metabolite production. The approach 
of substituting sugar with oil in culture media has dual role where in promotes the 
Streptomyces growth by utilizing lipids as an energy source and encapsulating the generated 
DNR-iron complex in the medium. In this review, we discussed aspects like anthracycline 
producers, biosynthesis pathways and gene regulation, side effects of DNR, mechanism for 
autotoxicity evasion and culture media components for enhancement of DNR production in 
Streptomyces sp. We anticipate that our work help researchers working with secondary 
metabolites production and decipher a methodology that would enhance DNR yield and 
facilitate the extraction of the resulting DNR by lowering costs in large-scale fermentation. 
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Beneš K., Pudhuvai B., Čurn V., Motis J., Rost M., Michalcova Z., Vilcinskas A. and Maťha 
V.: Autonomous Defense Through Biogenic Nanoparticle Formation in Daunomycin 
Producing Streptomyces. Microorganisms (submitted to edition) 
 
This study focuses on developing a cultivation medium specifically designed to induce auto-
resistance through Autonomous Defense Through Biogenic Nanoparticle Formation. Utilizing 
a fermentation medium enriched with olive pomace oil and iron, this research aims to explore 
the inherent affinity of daunomycin for both iron and oil. Our strategy leverages the 
combination of olive pomace oil and bacteria to facilitate the formation of iron nanoparticles 
(NPs). Furthermore, it seeks to bridge the existing knowledge gap by investigating the effects 
of daunomycin on eukaryotic cells in conjunction with the underexplored data from 
prokaryotic organisms, especially those involved in the production of daunomycin. This dual 
approach aims to enhance our understanding of daunomycin's mechanisms of action and its 
potential applications in both eukaryotic and prokaryotic systems. By systematically 
optimizing iron levels, we aim to facilitate the formation of daunomycin-iron complexes that 
can reduce the solubility and bioavailability of daunomycin. This transformation not only 
alleviates its cytotoxic effects on microbial production strains but also has the added ecological 
benefit of producing daunomycin as an insoluble precipitate. This precipitate can be easily 
separated from the cultivation medium by filtration or centrifugation, concentrated into a 
smaller volume, and extracted using phosphoric acid, followed by a final extraction of the 
dissolved daunomycin using significantly reduced volumes of organic solvents. Thus, this 
approach targets the reduction of toxic impacts during fermentation while enhancing 
compound yield and overall production efficiency, all while minimising the environmental 
footprint of the process. This research not only contributes to the field of microbial 
fermentation and antibiotic production but also emphasizes the importance of minimizing 
environmental impacts through the production of insoluble daunomycin precipitates that can 
be efficiently recovered from the cultivation medium. Overall, these findings present 
promising avenues for further investigation into the mechanisms underlying biogenic 
nanoparticle formation and the optimization of cultivation processes. Such explorations may 
not only refine microbial production systems for daunomycin but also broaden the potential 
application of similar strategies for the synthesis of other therapeutically important 
compounds.
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5. Conclusion 
In conclusion, this study presents significant advancements in understanding the biogenic 
nanoparticle formation mechanism, particularly in the context of daunomycin production, an 
anthracycline antibiotic pivotal for treating cancers such as leukemia. The inherent 
cytotoxicity of daunomycin and the challenges associated with its industrial-scale synthesis 
due to microbial toxicity have limited its therapeutic applicability. By developing a specialized 
cultivation medium that integrates olive pomace oil and iron, this research successfully 
induces an autonomous resistance mechanism through biogenic nanoparticle formation 
(ADBN). The amphiphilic properties of olive pomace oil not only serve as a carbon source but 
also facilitate the stabilization of nanoparticles, thereby enhancing the efficacy of the synthesis 
process due to its rich phenolic content, which promotes crucial redox reactions. 

The optimization of the medium composition through empirical methods resulted in a 
marked increase in daunomycin production, achieving yields between 5.5 and 6.0 g/L, which 
demonstrates a significant advancement relative to prior methodologies. Characterization of 
the nanoparticles confirmed the successful incorporation of iron and daunomycin, 
underscoring the potential of this approach to mitigate cytotoxicity while improving yield. The 
presence of specific proteins associated with iron homeostasis and oxidative stress response 
further illustrates the organism's ability to adapt to high iron concentrations, highlighting the 
intricate biochemical pathways at play. Moreover, the observed inverse correlation between 
redox potential (Eh) and daunomycin production suggests that monitoring Eh could serve as a 
valuable indicator for optimizing fermentation conditions. 

This research not only contributes to microbial fermentation and antibiotic production 
but also emphasizes the importance of minimizing environmental impacts through the 
production of insoluble daunomycin precipitates that can be efficiently recovered from the 
cultivation medium. These findings present promising avenues for further investigation into 
the mechanisms underlying biogenic nanoparticle formation and the optimization of 
cultivation processes. Such explorations may not only refine microbial production systems for 
daunomycin but also broaden the potential application of similar strategies for the synthesis of 
other therapeutically important compounds. 

In conclusion, highlighting the unique origin of the Streptomyces strain employed in 
this study, which was isolated from mosquito larvae, is of the utmost importance. This research 
not only delineates a novel cultivation process to produce daunomycin but also illuminates the 
significant potential of insect-derived microorganisms as valuable assets in pharmaceutical 
research. Insects, representing one of the most diverse taxa on the planet, are hosts to many 
microorganisms, which may yield a wealth of bioactive compounds relevant to drug 
development. Recent studies have increasingly recognized these insect-associated bacteria as 
promising sources for pharmaceutically active substances (Piel 2006; Chevrette et al. 2019; 
Van Moll et al. 2021; Diarra et al. 2024). 

The metabolic diversity inherent in these insect-associated microbes, cultivated over 
millions of years of co-evolution with their hosts, presents a significant opportunity for 
advancing drug discovery, particularly in the context of rising antimicrobial resistance and the 
emergence of novel diseases (Bode 2011; Dettner 2011). It is, therefore, evident that the 
exploration of this hitherto underutilized microbial reservoir has the potential to pave the way 
for identifying innovative therapeutic agents, thereby making a significant contribution to the 
ongoing efforts in pharmaceutical research and development.  
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